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1 Introduction

More than two and a half centuries ago, Probability Theory was first conceived
by enterprising mathematicians helping gamblers to analyze games of chance.
Since then the field has developed into a broad discipline with deep connections
to other branches of mathematics such as physics, statistics, and economics.
Today, the most rigorous studies in probability utilize measure theory, with
the fundamental building block of modern probability being measure spaces
(X,M, µ) such that µ(X) = 1.

2 Terminology

Probability theory has its own vocabulary whose terms were created before the
connection with measure theory was made explicit. Below is a list of compar-
isons between the Analysts’ and Probabilists’ Terms for various Measure Theory
concepts.

List of Terms
Analysis Terms Probability Terms
Measure Space (X,M, µ)(µ(X) = 1) Sample Space (Ω,B, P )
(σ−) algebra (σ−) field
Measurable set Event
Measurable real-valued function f Random variable X
Integral of f Expectation of mean of X, E(X)
Convergence in measure Convergence in probability
Almost everywhere Almost surely
Borel Probability Measure on R Distribution
Characteristic function Indicator function

Typically, probabilists have an aversion to displaying the arguments of ran-
dom variables. Measurable sets such as P ({w : X(w) > α}) are displayed as
P (X > α)). In addition, we define the variance σ2(X) and standard devia-
tion σ(X) by the following formulas:

σ2(X) = inf
a∈R

E[(X − a)2]

σ(X) =
√
σ2(X)

Theorem 0.1: If X ∈ L2, then E[(X − α)2] = E[X2 − 2αX + α2] =
E(X2) − 2αE(X) + α2 is a quadratic function of α whose minimum occurs
when a = E(X). Hence,

σ2(X) = E[(X − E(X))2] = E[X2 − E(X)2] = E(X2)− E(X)2
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Corollary 0.1: Given a Borel Probability measure λ on R, let the mean
be denoted as λ̄. We obtain the following equivalences by Theorem 0.1:

λ̄ =

∫
tdλ(t), σ2 =

∫
(t− λ̄)2dλ(t).

Distribution: If X is a random variable on Ω then PX is a probability
measure on R called the distribution of X, and the function

F (t) = PX((−∞, t]) = P (X ≤ t)

is called the distribution function of X. If {Xα} is a family of random vari-
ables such that PXα = PXβ

for all α, β ∈ A, the Xα are said to be identically
distributed. More generally, for any finite sequence of X1, ..., Xn of random
variables, we can consider (X1, ..., Xn) as a map from Ω to Rn. and the measure
P(X1,...,Xn) on Rn is called the joint distribution of X1, ..., Xn.

As a general principle, all properties of random variables that are relevant
to probability theory can be expressed in terms of their joint distributions. For
example, take Proposition 0.1:

E(X) =

∫
tdPx(t), σ

2(X) =

∫
(t− E(X))2dPX(t)

E(X + Y ) =

∫
(t+ s)dP(X,Y )(t, s).

Stochastic Independence: Consider a probability space (Ω,B, P ) and an
event E such that P (E) > 0. Then the set function PE(F ) = P (E ∩ F )/P (E)
represents the probability of an event F given that E occurs. If PE(F ) = P (F ),
that is, the probability of F is the same whether or not we restrict to E, then
F is said to be independent of E. Thus, F is independent of E if and only if
P (E ∩ F ) = P (E)P (F ).

Definition: A collection {Xα}α∈A of events in Ω to be independent if
P (Eα1

∩ ... ∩ Eαn
) =

∏n
1 P (Eαi

) for all n ∈ N and all distinct α1, ...αn ∈ A.

3 Independent Random Variables

Many results exist for independent random variables, as one of the central fo-
cuses of Measure-Theoretic Probability.

Theorem 0.2: Let {Xnj : 1 ≤ j ≤ J(n), 1 ≤ n ≤ N.} be a two dimensional
list of random independent variables, and where J(n) is some function. Let
fn : RJ(n) → R be Borel measurable for 1 ≤ n ≤ N. Then the random variables
Yn = fn(Xn1, ..., XnJ(n)) are independent for 1 ≤ n ≤ N.
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Proof. Let Xn = (Xn1, ..., XnJ(n)). If B1, ..., BN are Borel subsets of R, we have
Y −1
n (Bn) = X−1

n (f−1
n (Bn)) and hence,

(Y1, ..., YN )−1(B1 × ...×BN ) =

N⋂
1

Y −1
n (Bn)

= (X1, ..., XN )−1(f−1
1 (B1)× ...× f−1

N (BN )).

(1)

Therefore, by the independence of the Xnj and Fubini’s theorem,

P(Y1,...,Yn)(B1 × ...×Bn) = P(X1,...,XN )(f
−1
1 (B1)× ...× f−1

N (BN )

=

 N∏
n=1

J(n)∏
j=1

PXnj

 (f−1
1 (B1)× ...× f−1

N (BN ))

=

N∏
n=1

PXn(f
−1
n (Bn))

=

N∏
n=1

PYn
(Bn).

(2)

Definition: Let µ and v be measures on a Borel σ algebra on Rn. The
convolution of µ and v, denoted µ ∗ v is the measure defined by

µ ∗ v(B) :=

∫
χB(x+ y)dµ(x)dv(y)

where χB is the indicator (characteristic) function of B. Using this definition of
convolution, it can be shown that if λ1, ..., λn ∈ M(R), then λ1 ∗ ... ∗λn is given
by the equation:

λ1 ∗ ... ∗ λn(E) =

∫
...

∫
χE(t1 + ...+ tn)dλ1(t1)...dλn(tn). (3)

Theorem 0.3: If {Xj}n1 are independent random variables, then

PX1+...+Xn
= PX1

∗ ... ∗ PXn

Proof. Let A(t1, ..., tn) =
∑n

1 tj . This implies X1 + ...+Xn = A(X1, ..., Xn), so

PX1+...+Xn
= (P(X1,...,Xn))A =

(
N∏
1

PXj

)
A

,

and by equation (3), the last expression equals P1 ∗ ... ∗ Pn. This proves the
first assertion, and once the first assertion is known, the same argument, with
the absolute values removed, proves the second one.

4



Theorem 0.4: Suppose that {Xj}n1 are independent random variables. If
Xj ∈ L1 for all j, then

∏n
1 |Xj | ∈ L1 and E(

∏n
1 Xj) =

∏n
1 E(Xj).

Proof. We have
∏n

1 |Xj | = f(X1, ..., Xn) where f(t1, ..., tn) =
∏n

1 |tj |. Hence,

E

(
n∏
1

|Xj |

)
=

∫
fdP(X1,...,Xn) =

∫
fd

(
n∏
1

PXj

)

=

n∏
1

∫
|tj |dPXj (tj) =

n∏
1

E(|Xj |)
(4)

Theorem 0.5: If {Xj}n1 are independent and in L2 then σ2(X1+...+Xn) =∑n
1 σ

2(Xj).

Proof. Let Yj = Xj −E(Xj). Then {Yj}n1 are independent and have mean zero,
so

E(YjYk) = E(Yj)E(Yk) = 0, (j ̸= k).

Therefore,

σ2(X1 + ...+Xn) = E((Y1 + ...+ Yn)
2) =

∑
j,k

E(YjYk)

=
∑
j

E(Y 2
j ) =

∑
j

σ2(Xj).
(5)

4 The Law of Large Numbers

If one plays a gambling game many times, one’s average winnings or losses
per game should be roughly the expected winnings or losses in each individual
game. In symbols, if {Xj}∞1 is a sequence of independent random variables
and E(Xj) = µj , then the average n−1

∑n
1 Xj should be close to the constant

n−1
∑n

1 µj when n is large. The Law of Large numbers comes in several ver-
sions, depending on the hypotheses one wishes to make.

The Weak Law of Large Numbers: Let {Xj}∞1 be a sequence of indepen-
dent L2 random variables with means {µj} and variances {σ2}. If n−2

∑n
1 σ

2
j →

0 as n → ∞, then n−1
∑n

1 (Xj − µj) → 0 in probablity as n → ∞.

Proof. n−1
∑n

1 (Xjµj) has mean 0 and by Theorem 0.5, has variance n−2
∑n

1 σ
2
j .

By Chebyshev’s inequality, for any ϵ > 0 we have

P

(
|n−1

n∑
1

(Xj − µj)| > ϵ

)
≤ (nϵ)−2

n∑
1

σ2
j → 0 as n → ∞.
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Under stronger conditions, we can prove that n−1
∑n

1 (xj − µj) → 0 al-
most surely. First, we need another theorem. Kolmogorov’s Inequality: Let
X1, ..., Xn be independent random variables with mean 0 and variances σ2

1 , ..., σ
2
n

and let Sk = X1 + ...+Xk. For any ϵ > 0,

P

(
max

1≤k≤n
|Sk| ≥ ϵ

)
≤ ϵ−2

n∑
1

σ2
k.

Proof. Let Ak be the set where |Sj | < ϵ for j < k and |Sk| ≥ ϵ. Then the Ak’s
are disjoint and their union is the set where max |Sk| ≥ ϵ, so

P (max |Sk| ≥ ϵ) =

n∑
1

P (Ak) ≤ ϵ−2
n∑
1

E(χAk
S2
k)

because S2
k ≥ ϵ2 on Ak. On the other hand,

E(S2
n) ≥

n∑
1

E(χAk
S2
n)

=

n∑
1

E
(
χAk

[S2
k + 2Sk(Sn − Sk) + (Sn − Sk)

2]
)

≥
n∑
1

E(χAk
S2
k) + 2

n∑
1

E(χAk
Sk(Sn − Sk)).

(6)

It suffices to show that E(χAk
Sk(Sn − Sk)) = 0 for all k, for then we have

P (max |Sk| ≥ ϵ) ≤ ϵ−2E(S2
n) = ϵ−2

n∑
1

σ2
k

by Theorem 0.5, since the Xk’s have mean zero. But χAk
is a measurable

function of S1, ..., Sk and hence of X1, ..., Xk, wheras Sn − Sk is a measurable
function of Xk+1, ..., Xn. Moreover, E(Sk) =

∑k
1 E(Xj) = 0 for all k. Therefore,

by Theorems 0.2 and 0.4,

E(χAk
Sk(Sn − Sk)) = E(χAk

Sk)E(Sn − Sk) = E(χAk
Sk) · 0 = 0.

Kolmogorov’s Strong Law of Large Numbers: If {Xn}∞1 is a sequence
of independent L2 random variables with means {µn} and variances {σ2

n} such
that

∑∞
1 n−2σ2

n < ∞, then n−1
∑n

1 (Xj − µj) → 0 almost surely as n → ∞.

Proof. Let Sn =
∑n

1 (Xj − µj). Given ϵ > 0 for k ∈ N let Ak be the set
where n−1|Sn| ≥ ϵ for some n such that 2k−1 ≤ n < 2k. Then on Ak we have
|Sn| ≥ ϵ2k−1 for some n < 2k. By Kolmogorov’s Inequality,

6



P (Ak) ≤ (ϵ2k−1)−2
2k∑
1

σ2
n.

Therefore,

∞∑
1

P (Ak) ≤
4

ϵ2

∞∑
k=1

2k∑
n=1

2−2kσ2
n =

4

ϵ2

∞∑
n=1

 ∑
k≥log2 n

2−2k

σ2
n ≤ 8

ϵ2

∞∑
n=1

σ2
n

n2
< ∞,

so P (lim supAk) = 0 by the Borel-Cantelli lemma. But lim supAk is precisely
the set where n−1|Sn| ≥ ϵ for infinitely many n, so

P (lim supn−1|Sn| < ϵ) = 1.

Letting ϵ → 0 through a countable sequence of values, we conclude that n−1Sn →
0 almost surely.

5 Central Limit Theorem

Proposition 2: If a > 0,∫
Rn

exp(−a|x|2)dx =
(π
a

)n/2
.

Suppose µ ∈ R and σ > 0. Taking proposition 2 and using some elementary
calculus, we can show that the measure vσ

2

µ on R defined by

dvσ
2

µ (t) =
1

σ
√
2π

e(t−µ)2/2σdt

is a probability measure that satisfies∫
tdvδ

2

µ (t) = µ,

∫
(t− µ)2dvσ

2

µ (t) = σ2.

dvσ
2

µ is called the normal or Gaussian distribution with mean µ and
variance σ2. The special case v10 is called the standard normal distribution.
Normal and approximately normal distributions are extremely common in ap-
plied probability and statistics, and the theoretical explanation for this phe-
nomenon is the central limit theorem.

Definition: A sequence µn} is said to converge vaguely to µ if there
exists a dense subset D ⊂ R such that

∀a, b ∈ D, a < b, µn(a, b] → µ(a, b].

Lemma 0.1 Let λ be a Borel probability measure on R such that∫
t2dλ(t) = 1,

∫
tdλ(t) = 0.
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For n ∈ N let λ∗n = λ ∗ ... ∗ λ (n factors) and define the measure λn by
λn(E) = λ∗n(

√
nE) where

√
nE = {

√
nt : t ∈ E}. Then λn → v10 vaguely

as n → ∞.

Proof. The proof involves theorems and terminology from Fourier Analysis out-
side of the scope of this project. The general idea is to take the fact that the
Fourier transform of λ and then to use Taylor’s Theorem to get

λ̂(ζ) = 1− 2π2ζ2o(ζ2).

By making an equivalence between convolutions and multiplication, we have
(λ̂∗n) = (λ̂)n. Making a change of variable, we can obtain

−π2ζ2 + n · o(ζ
2

n
)

which tends to −2π2ζ2 as n → ∞. Then, applying yet more Fourier Analysis
theorems, we get that λn → v10 vaguely as n → ∞.

Lemma 0.2: If µn → µ vaguely and µn is positive, ∀n ∈ N, then Fn(x) →
F (x) at every x at which F is continuous.

Proof. µn > 0 implies µ ≥ 0 and thus that F is continuous at x = a. If f ∈ Cc(R)
is the function that is 1 on [−N, a], 0 on (−∞,−N − ϵ) and [a+ ϵ,∞] and linear
in betweem, we have

Fn(a)− Fn(−N) = µn((−N − a]) ≤
∫

fdµn →
∫

fdµ

≤ F (a+ ϵ)− F (−N − ϵ).

(7)

As N → ∞, Fn(−N) and F (−N − ϵ) tend to zero, we have

lim
n→∞

supFn(a) ≤ F (a+ ϵ).

Similarly, by considering the function that 1 is on [−N + ϵ, a + ϵ], 0 on
(−∞, N ] and [a,∞) and linear in between, we see that limn→∞ inf Fn(a) → F (a)
as desired.

Central Limit Theorem. Let {Xj} be a sequence of independent identi-
cally distributed L2 random variables with mean µ and variance σ2. As n → ∞,
the distribution of (σ

√
n)−1

∑n
1 (Xj −µ) converges vaguely to the standard nor-

mal distribution v10 and for all a ∈ R,

lim
n→∞

P

(
1

σ
√
n

n∑
1

(Xn − µ) ≤ a

)
=

1√
2π

∫ a

−∞
e−t2/2dt.

Proof. Replacing Xj by σ−1(Xj −µ) we may assume that µ = 0 and σ = 1. If λ
is the common distribution of the Xjs then λ satisfies the hypothesis of Lemma
1, and in the notation used there, λn is the distribution of n−1/2

∑n
1 Xj . This

therefore implies that (σ
√
n)−1

∑n
1 (Xj − µ) converges vaguely to the standard

normal distribution v10 . To prove convergence for all a ∈ R, we use Lemma 0.2
to make it equivalent to the first assertion.
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6 Bonus: Brownian Motion

It was observed by biologist Robert Brown in 1827 that small particles sus-
pended in a fluid such as water or air undergo an irregular motion now named
Brownian motion. Nearly a century later in 1905 Albert Einstein described
Brownian Motion using a probabilstic model, observing that if the kinetic en-
ergy of fluids was right, the molecules of water moved as Brown had described
it, if given a random bombardment by the molecules in the fluid.

The mathematical models used to describe these random movements heavily
rely upon measure theory as a foundation, and will be explored in this section.
Specifically, we will explore the limiting case where the motion is assumed to
result from an infinite number of collisions with molecules of infinitesimal size.
Aplications of Brownian motion have become extremely diverse, reaching nearly
every field related to mathematics from physics to statistics and economics.

One can consider Brownian motion in any number of space dimensions, but
we will consider its theory in one dimension first. First, as a matter of normal-
ization, we assume that the particle starts at origin time t = 0 and also that
X0 = 0 almost surely (Condition 1).

Second, since any given collision affects the particle only by an infinitesi-
mal amount, it has no long-term effect, so the motion of the particle after time
t should depend on its position Xt at that time but not on its previous his-
tory. Thus we assume If 0 ≤ t0 < t1 < ... < tn, then the random variables
Xtj −Xtj−1 , (1 ≤ j ≤ n) are independent (Condition 2).

Since the physical processes underlying Brownian motion are homogeneous
in time, we can further postulate that the distribution ofXt−Xs depends only on
t−s. If we divide the interval [s, t] into n equal subintervals [t0, t1], ..., [tn−1, tn](t0 =
s, tn = t) and write Xt −Xs =

∑n
1 (Xtj −Xtj−1) it then follows from Condition

2 that Xt−Xs is the sum of n independent identically distributed random vari-
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ables. Since n can be taken arbitrarily large, the central limit theorem suggests
that the distribution of Xt − Xs should be normal. Finally, since the particle
is as likely to move to the left as to the right, the mean of Xt −Xs should be
0. Putting this all together, we are led to the third assumption: There is a
constant C > 0 such that for 0 < s < t,Xt − Xs has the normal distribution

v
C(t−s)
0 with mean 0 and variance C(t− s) (Condition 3).

Definition: A Stochastic Process is a parameterized collection of random
variables {Xt}t∈T defined on a probability space and assuming values in Rn.

An n-dimensional abstract Wiener process is a stochastic process {Xt}
where Xt = (X1

t , ..., X
n
t ) such that each {Xj

t } fulfills conditions 1 through 3 and
(ii): if Yj is any function of the variables {Xj

t }t>0 for j = 1, ..., n then Y1, ..., Yn

are independent. We call the one dimensional case an abstract Wiener pro-
cess.

Most real-world Wiener/Brownian motion processes exhibit the property
that over time, the mean of the process slowly (and constantly) shifts either
upwards or downwards. This property is known as the drift parameter and
is represented by µ. By adding drift into our Brownian Motion, we get

Y (t) = µt+ cX(t)

where X(t) is a standard Brownian motion process defined earlier. The most
prominent applications of Brownian motion today involve its relevance to stock
prices and stock options.

Definition: A Stochastic Process is said to follow a Geometric Brown-
ian Motion if it satisfies a stochastic differential equation:

dSt = µStdt+ σStdWt

where Wt is a Brownian Motion, µ is the constant drift, and σ is the constant
percentage volatility (standard deviation). By definition, a Geometric Brownian
motion process Z(t) is a stochastic process such that W (t) = logZ(t) is a
Brownian Motion process with variance paramter c2 and drift parameter µ =
α − 1

2c
2 where α is the drift parameter for Z(t). Using this idea, we can write

any geometric Brownian motion process Z(t) with initial value Z(0) = z as a
function of a standard Brownian motion process X(t) in the following way:

Z(t) = zeW (t) = ze(α−1/2c2)t+cX(t).

Definition: Define Tab to be the time at which the Brownian Motion process
exits the interval [a, b] or more precisely,

Tab = min[t ≥ 0;Y (t) = a or Y (t) = b].

Because we want to make money, we are interested in the probability of Tab

bringing the process to the high side of the interval, namely b. According to
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Figure 1: Simulated geometric Brownian motions with parameters from market
data

Taylor and Karlin, this probability is

P [Y (Tab)|Y (0) = x] =
e−2xµ/c2 − e−2αµ/c2

e−2bµ/c2 − e−2αµ/c2

(See: proof on Taylor page 509). Combining this formula with the Brown-
ian Motion W (t) defined above, we obtain a surprisingly good model for stock
market behavior. Firstly, Z(t) can never be negative, which is important if one
wants to model the behavior of a stock or other market entity. In addition, Z(t)
follows a long term exponential decay or growth trajectory, due to the presence
of the e, which more accurately describes many situations in trading.

As a simple example, suppose Gamestop (GME) is expecting a growth of
ten percent, and on any given week of trading, the fluctuation of the stock is
given by c2 = 5. Suppose a shareholder buys ten shares of Gamestop at a price
of 50 dollars and plans on selling them if the prices increases to 80 dollars or
drops to 35 dollars, what is the probability that the shareholder sells his shares
at a profit?

Let’s convert Gamestop’s growth to a weekly growth, since that is the unit of
time being dealt with in this situation. We would therefore have µ = .10/52 =
.002 and 2µ/c2 = 2(0.002)/5 = 0.0008. Plugging in this information with
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x = 50, a = 35, b = 80:

P (profit) =
e−(50)(0.0008) − e−(35)(0.0008)

e−(80)(0.0008) − e−(35)(0.0008)
= 0.337.

In other words, our investor is more likely to lose money than to make a profit.
What would happen if the shareholder decided to sell sooner? Suppose he
decides to sell at b = 55. We see that

P (profit) =
e−(50)(0.0008) − e−(35)(0.0008)

e−(55)(0.0008) − e−(35)(0.0008)
= 0.750.

This new likelihood is indeed much more favorable to the investor, and shows
that even when a Brownian motion process is drifting upward, the short-term
fluctuations can affect the process enough to temporarily nullify this growth,
given the stockholder decides to sell under a specific price.
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