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Abstract

Low Rank Approximation is a technique which lossy compresses Singular Value Decom-

position matrices into lower rank while maintaining the “energy” within the matrix,

given by the monotonically decreasing sequence of singular values δi [6]. In a process

called Low Rank Adaptation, we freeze the pretrained model weights of deep learning

models and inject trainable Low Rank decomposition matrices onto their weights to

quickly adapt them to specific tasks [2]. We first adapt a generalized language model

(bloom-3) to perform reading comprehension tasks, and subsequently adapt a generic

stable diffusion model to produce colorful and pastel-colored backgrounds.
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Chapter 1

Introduction

This chapter will cover the concepts necessary to understand Low Rank Adaptation

and its applications to Deep Learning models at a high level. This report assumes the

reader is familiar with the concepts taught in an introductory Linear Algebra class. We

begin with an explanation and proof of Singular Value Decomposition, and how Low

Rank Approximation relates to SVDs. We then build upon this concept by introducing

Low Rank Adaptation and applying it to existing models to increase training speed

and effectiveness.

1.1 Background

1.1.1 Singular Value Decomposition

SVD combines important concepts of the subject into one significant theorem yielding

many applications. It states that any matrix, regardless of symmetry, dimension,

or rank, can be unconditionally decomposed into three matrices [7].

Definition: Let m and n be arbitrary. Given A ∈ Cm×n, not necessarily of full rank,

a singular value decomposition (SVD) of A is a factorization:

A = UΣV ∗

where
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U ∈ Cm×m is unitary,

V ∈ Cn×n is unitary,

Σ ∈ Rm×n is diagonal.

(1.1)

In addition, it is assumed that the diagonal entries σj of Σ are nonnegative and in

nonincreasing order; that is, σ1 ≥ σ2 ≥ ... ≥ σp ≥ 0, where p = min(m,n) [5].

Existence Theorem for SVDs: Every matrix A ∈ Cm×n has a singular value de-

composition.

Proof. The following proof follows Gilbert Strang’s Linear Algebra lectures at MIT in

2005 [8][9][10]. Consider a matrix A that is m×n with rank r. This implies the matrix

multiplication ATA is symmetric. In addition, it is positive semi-definite, and we will

prove this property: Consider any matrix B such that B = ATA. This implies

xTBx = xTATAx = (Ax)TAx = (Ax)2 ≥ 0

Since ATA is symmetric with PSD, it is therefore diagonalizable by an orthonormal

matrix, with all its eigenvalues λi ≥ 0. If we order such eigenvalues such that

σ2
1 ≥ ... ≥ σ2

r ≥ 0,

where r = rank(ATA) = rank(A). Let v1, ..., vr be an orthonormal set of corresponding

eigenvectors for the eigenvalues σi. Now, define a new vector ui such that ui = Avi/σi.

We want to show that ui is a unit eigenvector of AAT

Proof. Note that

AATui = AAT (Avi/σi) = AATAvi
1

σ1
= A(σi)

2vi
1

σi
= (σi)

2ui

To show that u− i is a unit eigenvector, we note that

uTi ui = (
Avi
σi

)T
Avi
σi

= (
vTi A

T

σi
)
Avi
σi

=
vTi A

TAvi
(σi)2

=
vTi (σi)

2vi
(σi)2

= vTi vi = 1

Putting everything together, if Vr is the n×n matrix whose ith column is vi, 0 ≤ i ≤ r

and Σr is the r × r diagonal matrix whose ith entry is σi and Ur is the m × r matrix
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whose ith column is ui =
1
σi
AVi, we have

Ur = AVrσ
−1
r ⇒ UrΣr = AVr.

If we multiply both sides of the equation by V T
r , we have by the orthonormality of V T

r :

UrΣrV
t
r = AIr = A.

An alternate proof for SVD existence, written by Trefethen and Bau is as follows: [5].

Proof. First, we isolate the direction of the largest action of A, and then proceed by

induction on the dimension of A. Set σ1 = ||A||2. By a compactness argument, there

must be vectors v1 ∈ Cm and u1 ∈ Cm with ||v1||2 = ||u1||2 = 1 and Av1 = σ1u1.

Consider any extensions of v1 to an orthonormal basis {vj} of Cn and of u1 to an

orthonomoral basis {uj} of Cm, and let U1 and V1 denote the unitary matrices with

columns uj and vj respectively. Then we have

U∗
1AV1 = S =

[
σ1 w∗

0 B

]
,

where 0 is a column vector of dimension m− 1, w∗ is a row vector of dimension n− 1

and B has dimensions (m− 1)× (n− 1). Furthermore,∣∣∣∣∣
∣∣∣∣∣
[
σ1 w∗

0 B

][
σ1

w

]∣∣∣∣∣
∣∣∣∣∣
2

≥ σ2
1 + w∗w = (σ2

1 + w∗w)1/2

∣∣∣∣∣
∣∣∣∣∣
[
σ1

w

]∣∣∣∣∣
∣∣∣∣∣
2

This implies ||S||2 ≥ (σ2
1 + w∗w)1/2. Since U1 and V1 are unitary, we know that

||S||2 = ||A||2 = σ1, so this implies w = 0. If n = 1 or m = 1, we are done. Otherwise,

the submatrix B describes the action of A on the subspace orthogonal to v1. By the

induction hypothesis, B has an SVD B = U2Σ2V
∗
2 . Now it is easy to verify that

A = U1

[
1 0

0 U2

][
σ1 0

0 Σ2

][
1 0

0 V2

]∗

V ∗
1

is an SVD of A, completing the proof of existence.

For the uniqueness claim, we argue that if the semiaxis lengths of a hyperellipse are

distinct, then the semiaxes themselves are determined by the geometry, up to signs.

Algebraically, we argue as follows: First, note that σ1 is uniquely determined by the
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condition that it is equal to ||A||2 as follows from the definition of an SVD. Suppose

that in addition to v1, there is another linearly independent vectorw w with ||w||2 = 1

and ||Aw||2 = σ1. Define a unit vector v2 orthogonal to v1 as a linear combination of

v1 and w,

v2 =
w − (v∗1w)v1

||w − (v∗1w)v1||2
.

Since ||A||2 = σ1, ||Av2||2 ≤ σ1 this must be an equality, for otherwise w = v1c + v2s

for some constants c and s with |c|2+ |s|2 = 1 we would have ||Aw||2 < σ1. This vector

v2 is a second right singular vector of A corresponding to the singular value σ1; it will

lead to the appearance of a vector y (equal to the last n− 1 components of V ∗
1 v2) with

||y||2 = 1 and ||By||2 = σ1. We conclude that if the singular vector v1 is not unique,

then the corresponding singular value σ1 is not simple.

1.1.2 Low Rank Approximation

Memory constraints must often be considered when storing and working with large

matrices. If we want to reduce the amount of space required to store a matrix, one

way we can do so is to approximate a given matrix A with a rank-k matrix, for some

k ∈ N. Such a matrix is called a low-rank approximation.

Low-Rank SVDs: We want to find a method to remove the least important aspects of

a matrix, while keeping the most important ones. Given that any matrix can be factored

into an SVD, and that the diagonal terms of Σ, σi are monotonically decreasing, SVDs

seem to be a good candidate to perform low-rank approximation.

Low-Rank Approximations from the SVD

A natural idea is to keep only the first k terms given by Σ [6]. That is, for an SVD

factorization A and a target rank k the proposed rank-k approximation is:

Â =

k∑
i=1

σi · uivTi .

The K-rank Approximation Process [6]

1: Compute the SVD of A, A = UΣV T

2: Keep only the top k right singular vectors. Set V T
k equal to the first k rows of V T .

3: Keep only the top k left singular vectors. Set Uk equal to the first k columns of U.

4: Keep only the top k singular values. Set Σk equal to the first k rows and columns

of S corresponding to the k largest singular values of A.
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5: The rank-k approximation is then

Ak = UkΣkV
T
k .

Choosing k

How many σ’s do we keep? What rank should our low-rank approximation be? Gen-

erally, for any mattrix, it is a good idea to keep 80-90 percent of the ”energy”, with

energy in this case being the summation
∑n

i=1 σ
2
i [11]. Formulated mathematically,

k∑
i=1

σ2
i ≥ β

n∑
i=1

σ2
i , β ∈ [0.8, 0.9]

1.1.3 Low Rank Adaptation

Many applications in deep learning rely on adapting one large-scale, pre-trained model

to multiple downstream applications. Adaptation is typically one via fine-tuning,

which updates all the parameters of the pre-trained model. The downside of fine-

tuning is that the new model contains as many parameters as in the original model,

and as models become increasingly large, it becomes increasingly unfeasible to train

multiple large models to perform domain-specific tasks [2].

Low Rank Adaptation (LoRA) is a procedure which freezes the pre-trained model

weights of a Machine Learning model and injects trainable low-rank approximations

of SVDs into it. Following up from previous research, the authors of LoRA, Hu et al.

(2021) propose that the change in weights during model adaptation have low intrinsic

rank [2]. That is, the first k terms in Σ hold far more importance than those in the

middle or at the end, allowing for significant reductions in matrix rank without drops

in performance. These low-rank matrices are then trained to perform specific tasks,

and in-turn, can adapt generalist models to specialized tasks. As we do not alter the

base weights, different low-rank matrices can be quickly switched in or out, allowing us

to use one large pre-trained model for multiple domain tasks.

LoRA Process [2]

Given a pre-trained weight matrix, W0 ∈ Rd×k, we constrain its update by representing

its adapted parameters ∆W as

W0 +∆W = W0 +BA

where B ∈ Rd×r, A ∈ Rr×k and where the rank r is far below min(d, k)
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In principle, we can apply LoRA to any weight matrix in a neural network to reduce the

number of trainable parameters. In the transformer architecture, there are four weight

matrices in the self-attention module (Wq,Wk,Wv,Wo) and two in the MLP module,

which we can perform Low Rank Adaptation on.

Benefits

The most significant benefit comes from a reduction in storage and memory usage. In

the original Low Rank Adaptation paper by Hu et al. (2021) we see that for a large

Transformer trained using the Adam optimizer, VRAM usage can be reduced by up to

2/3 if r is significantly smaller than the dimensions of the weight matrices due to not

needing to store the optimizer states for the frozen parameters. Furthermore, VRAM

consumption decreased by a factor of 10,000 (from 350GB to 35MB) when adapting

GPT-3 with r = 4. Finally, a speedup on individual GPUs of 25 percent was noted

due to not needing to compute the gradient for the vast majority of parameters. (32.5

tokens/V100 GPU vs 43.1 tokens/V100 GPU).

These benefits allow us to train with significantly fewer GPUs and avoid I/O bottlenecks

to adapt a pre-trained model. Such a decrease in hardware requirements also means

that, for the first time, members of the general public are able to easily fine-tune large-

pretrained models for specific tasks. With as little as 5 images, amateurs can create

LoRAs for pre-train Stable Diffusion models to draw in a specific style, or setting.

1.2 About this Report

This is a project of Shiwei Chen, submitted to the Mathematics Department at the

City College of San Francisco as a part of the Mathematics Honors program.

1.3 Chapter List

Chapter 2 Design: Software dependencies, and general structure of a basic LoRA on

a generic Language Model.

Chapter 3 Implementation: Implementation of design chapter, featuring training re-

sults and significance.

Chapter 4 Stable Diffusion LoRA: Low Rank Adaptation on Stable Diffusion models,

adapting a pre-trained model to draw colorful scenery and images.

Chapter 5 Conclusion
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Chapter 2

Design

To demonstrate Low-Rank Adaptation, we set our goal to adapt a language model to

succeed in reading comprehension tasks by answering questions about an article that

we provide the model.

In adapting the our pre-trained language model to answer prompts, we will use Loralib,

a software library developed by Microsoft to implement the process described in Edward

et al. (2021). We will also use the PEFT (Parameter Efficient Fine Tuning) and

Transformers library from Huggingface. Lastly, we will be implementing our LoRA

with PyTorch.

2.1 Model

We will be using the Bloom Language Model as our untrained base model. Bloom’s

architecture is modified from GPT2, and uses 3 billion parameters. Due to the Bloom

LM’s open source status and its training data being comprised of multiple languages,

it will be suitable for us to adapt for this project.

2.2 Datasets

We will be using the Stanford Question Answering Dataset (SQuAD) reading compre-

hension dataset, which consists of questions posed by contributors on a set of Wikipedia

articles, where the answer to every question is a segment of text, or span, from the cor-

responding reading passage. Find more about the squad v2 dataset by clicking here.
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Chapter 3

Implementation

Implementation of the LoRA model was developed on Google Colab, and you may find

the source code by clicking here.

The Low Rank Adaptation for bloom-3b was implemented with rank r = 8, leading to

a trainable parameter count of 2.4 million, as opposed to the 3 billion frozen pre-trained

weights parameters. This significant reduction in parameters reflects on the training

time of the Low Rank Adaptation, which parsed through the 100 entries on the squad

dataset in 102 seconds using the Google Colab free-tier GPU, a Nvidia Tesla K80.

Training loss generally observed slight a shift downwards, averaging 2.53627 by the end

of training, but beginning at around 3.0.

Figure 3.1: Output of adapted Bloom-3 model, given a context and question as inputs
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Chapter 4

Stable Diffusion LoRA

4.1 Introduction

Stable Diffusion is a generative deep learning model used for creating high-quality

images through iterative refinement of noise. It leverages a diffusion process where noise

is gradually added to an image and then reversed using neural networks to generate

coherent images from random noise. Stable Diffusion has significant applications in art

generation, image inpainting, and super-resolution, allowing for the creation of detailed

and visually appealing images from minimal text input.

Low-Rank Adaptation (LoRA) can be applied to a pre-trained Stable Diffusion model to

adapt it to specific art styles, characters, or settings. LoRA’s ease of use and low barriers

to entry have contributed to the flourishing of generating art with Stable Diffusion as

a hobby.

Figure 4.1: ’An oil painting of a latent space.’ drawn by a Latent Diffusion Model [3]
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4.2 Architecture

4.2.1 U-net

The U-net is a convolutional neural network originally developed for biomedical image

segmentation. The model consists of a contracting path and then an expansive path,

giving it it’s u-shaped architecture [13]. The contracting path consists of repeated

convolutions, each followed by a ReLU activation function and a max pooling opera-

tion. As an image goes through the U-net, it is continuously compressed, losing spatial

information while feature information is increased.

Figure 4.2: Diagram of U-net with Resnet as a backbone [13]

4.2.2 Variational Auto-Encoder

A Latent Space is a lower-dimensional representation where each point corresponds

to a potential data point.

A variational autoencoder is a generative model used for learning latent representa-

tions of data in an unsupervised manner. The encoder takes an input data point (such

as an image) and maps it to a probability distribution in a latent space. Instead of

directly outputting a fixed latent representation, the encoder outputs the parameters

(mean and variance) of a probability distribution that represents the latent space.

Stable Diffusion consists of 3 parts: A variational autoencoder (VAE) a U-net,

and an optional text encoder [3]. The VAE encoder compresses the image from

pixel space to a smaller dimensional latent space, capturing a more fundamental
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meaning of the image. Gaussian Noise is then continuously applied to the com-

pressed latent representation. Then, the result is passed into the U-Net to be denoised.

Figure 4.3: Diagram of latent diffusion architecture used by Stable Diffusion [3]

Importantly, the denoising step can be flexibly conditioned on a string of text, and

image, or another modality. The encoded conditioning data is exposed to denoising

U-Nets via a cross-attention mechanism, where it affects the denoising of an image,

leading to image generation.

Figure 4.4: Denoising process used by Stable Diffusion [12]

4.2.3 LoRA on Stable Diffusion

Low Rank Adaptation can replace any trainable parameters. Most commonly, LoRA is

used on the weights, biases, and cross-attention mechanism of the model. Simo Ryu’s
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LoRA Stable Diffusion library implements these features in a popular repository with

over 6k stars.

4.3 Implementation

The dataset consists of 171 handpicked images selected based on their color, saturation,

and scenery. Corresponding tags for dataset were generated by the Khoya trainer model

and manually pruned. Interested readers may click here to access this training dataset.

4.4 Results and Evaluation

The LoRA was given one hour of training on a u-net learning rate of 5e− 4 and text-

encoder learning rate of 1e − 4 with ten repeats on ten epochs. All pictures were

produced at 1080 x 720 resolution. We present a selection of works produced by the

”colorful scenery LoRA” below.
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Chapter 5

Conclusion

Since it’s original application to Large Language Models in 2021, Low-Rank Adaptation

has found use in many other subdomains of Deep Learning. Research building upon

the original LoRA paper continues. QLoRA, a new approach presented by Dettmers

et al (2023), introduces a number of innovations to save memory without sacrificing

performance [1]. Another algorithm, Low-Rank Hadamard Product (LoHa) approxi-

mates a large weight matrix with more low-rank matrices and combines them with the

Hadamard Product to create even more parameter-efficient models.

As the field progresses, it is expected that further refinements and novel applications of

low-rank adaptation will continue to emerge, driving forward the capabilities of modern

models and expanding their applicability across various domains. The ongoing explo-

ration and adaptation of these techniques will likely remain a fertile ground for future

research, offering promising avenues for both theoretical advancements and practical

implementations.
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