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Abstract
Large Language Models (LLMs) have revolutionized natural language processing tasks, but
their significant size and computational demands create barriers to practical deployment, par-
ticularly in resource-constrained environments. Model compression has emerged as a pivotal
research field to overcome these limitations. This research project provides a survey of the
domain space of compression techniques for LLMs, exploring methods such as quantization,
pruning, knowledge distillation, and low rank factorization, as well as orthogonal methods
combining two or more of these areas. There is an emphasis on recent developments, as well
as practical implementation and performance comparisons between the various compression
methods surveyed. We hope this project will serve as a valuable resource for ML practitioners
aiming to improve the efficiency and practical utility of LLMs.
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1 Background

LLMs are built on the Transformer architec-
ture [9] which is based on the idea of multi-
headed self-attention (MHA), which allows
the model to jointly attend to information at
different positions from different representa-
tion subspaces. [10] MHA is defined as

MultiHead(Q,K, V ) = Concat(head1, ..., headh)WO,

where Q,K, V ∈ Rn×dm are input embedding
matrices, n is the sequence length, and dm is
the embedding dimension, and h is the num-
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ber of heads. Each head is defined as

headi = softmax

[
QWQ

i (KWK
i )T√

dk

]
VW V

i ,

(1)

where WQ
i ,WK

i ∈ Rdm×dk , and W V
i ∈ Rdm×dv ,

WO ∈ Rhdv×dm are learned matrices and dk, dv
are hidden dimension of the projection sub-
spaces.

2 Quantization

Figure 1: An illustration comparing Quantization-Aware Training (QAT) and Post-Training
Quantization (PTQ).

When Large Language Models are required on
mobile devices or edge devices, the memory
overhead can be a major blocker. Not just
memory, but also inference will be slow be-
cause the computation required to run a for-
ward pass on hundreds of billions of parame-
ters is too large for mobile processors. Instead
of reducing the number of parameters directly,
quantization is a technique that reduces the
actual size of the data type the parameters
are stored as. Basic methods involve reducing
the 32-bit floating point numbers 16-bit floats,
16-bit bfloats, 8-bit integers, 4-bit floats, and
even as small 1-bit integers.

Quantization inherently reduces the amount
of information stored in each of the parame-
ters, theoretically reducing the performance of
the LLM. Researchers have tackled this prob-
lem in one of two ways: Quantization-Aware
Training and Post-Training Quantization.

2.1 Quantization-Aware Train-
ing (QAT)

To regain the information lost in quanti-
zation, Quantization-Aware training retrains
the quantized model on output from the orig-
inal size LLM.

2.1.1 OneBit: Towards Extremely
Low-bit Large Language Models

The OneBit [13] approach quantizes the weight
matrices of LLMs to 1-bit using a method
known as Sign-Value-Independent Decompo-
sition (SVID). This approach decomposes the
weight matrix W into a sign matrix W±1 and
two value vectors g and h to maintain preci-
sion. The decomposition of W is represented
as:

W ≈ W±1 ⊙ (g · hT ),
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where ⊙ denotes element-wise multiplication.
The sign matrix W±1 contains only ±1 values,
and the value vectors g and h are stored in
FP16 precision. This decomposition enables
efficient 1-bit quantization while preserving
much of the model’s predictive performance.

One of the most striking outcomes of the
OneBit method is its ability to achieve a
compression ratio far greater than traditional
quantization methods. The experiments con-
ducted on LLaMA models demonstrated that
even at 1-bit quantization, the predictive per-
formance was retained at 81% of the non-
quantized model. This finding shows the po-
tential of 1-bit quantization in edge devices
where memory and computational efficiency
are critical. Furthermore, the SVID approach
ensures that the approximation of the original
weight matrix is highly accurate, thereby min-
imizing the loss in performance. The method
also employs a novel initialization strategy for
the quantized weights using rank-1 decom-
position to ensure better convergence during
training.

Additionally, OneBit incorporates knowledge
distillation to bridge the performance gap
between quantized models and full-precision
models. This process uses the output of the
full-precision model as a teacher to guide the
quantized model’s training, thereby ensuring
that key decision boundaries are preserved.
This combination of efficiency and effective-
ness makes OneBit a revolutionary advance-
ment in LLM quantization.

2.1.2 Low-Rank Quantization-Aware
Training for LLMs

The Low-Rank Quantization-Aware Train-
ing (LR-QAT) [1] method introduces low-rank
adapters to reduce the memory footprint dur-
ing quantization-aware training. The weight
matrix W is represented as:

Wc = s · clip

(
W0

s0
+

α

r
AB,−2b−1, 2b−1 − 1

)
,

where s is a quantization scale, A and B
are low-rank matrices, and W0 is the pre-
trained weight matrix. Here, s0 is a frozen
initial scale, and the matrices A and B are
updated during training. This approach re-
duces the memory required for training and
enables the merging of the low-rank matrices
into the quantized weight tensor at the end of
training.

The LR-QAT method stands out due to its
memory efficiency and adaptability. Unlike
traditional QAT, which requires significant
memory overhead, LR-QAT only requires low-
rank adapters A and B, leading to a sub-
stantial reduction in training memory require-
ments. The method was validated on LLaMA-
2 and Mistral model families, showcasing its
ability to achieve performance on par with full
QAT but at a fraction of the memory cost.
This efficiency makes it possible to train large
models on a single consumer-grade GPU.

LR-QAT also incorporates an innovative
checkpointing strategy that avoids storing in-
termediate computation results in memory
during backpropagation. Instead, it recom-
putes necessary elements on-the-fly, thereby
significantly reducing the memory footprint.
This feature allows large LLMs to be trained
using consumer-grade GPUs without compro-
mising on computational efficiency.

Another critical aspect of LR-QAT is its com-
patibility with other PTQ techniques, allow-
ing for flexible integration with existing quan-
tization pipelines. By combining low-rank
decomposition with quantization-aware train-
ing, LR-QAT achieves high compression ratios
while maintaining high accuracy. Addition-
ally, it supports flexible quantization granu-
larity and can be used for both weights and
activations.

2.2 Post-Training Quantization

Post-training quantization (PTQ) reduces
model size and computational cost without
requiring retraining. This approach directly
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quantizes the trained weights and activations
of an LLM.

2.2.1 SpinQuant: LLM Quantization
with Learned Rotations

SpinQuant [7] addresses the challenge of out-
liers in LLMs by applying rotation matrices
to weight and activation tensors before quanti-
zation. By using optimized rotation matrices
R1, R2, R3, R4, the method reduces the kurto-
sis of activation distributions, making them
more Gaussian-like, which facilitates easier
quantization. The rotation transformation is
represented as:

XQ = α

⌊
XR− β

α

⌋
+ β,

where XQ is the quantized tensor, XR is
the rotated real-valued tensor, and α and β
are scale and offset values, respectively. By
optimizing the rotation matrices, the model
achieves better quantization results compared
to random rotation, leading to minimal per-
formance degradation.

SpinQuant introduces two main vari-

ants, SpinQuantnohad and SpinQuanthad.
SpinQuantnohad merges rotation matrices into
pre-trained weights without altering the net-
work architecture, while SpinQuanthad intro-
duces online Hadamard rotations to address
low-bit quantization of activations and KV-
cache. This combined approach reduces the
performance gap between quantized and full-
precision models.

Conclusion

The quantization methods presented here il-
lustrate the diverse strategies available for
compressing large language models. From
OneBit’s extreme 1-bit quantization to LR-
QAT’s memory-efficient low-rank approach
and SpinQuant’s optimization of activation
distributions, each method demonstrates a
unique path toward efficiency. These tech-
niques enable LLMs to be deployed on
resource-constrained devices while maintain-
ing high performance. Collectively, they high-
light the potential of quantization to reshape
the practical deployment of LLMs in real-
world applications.

3 Pruning

Prune small models from LLMs

Neural networks are known to possess more
parameters than necessary for effective gener-
alization and accurate predictions. Research
by Frankle et al. [4] highlights that only a spe-
cific subset of these parameters is crucial for
making predictions. Model pruning emerges
as a natural approach to compressing neural
networks, based on the premise that effective
compression involves eliminating weights that
are not actively contributing to the model’s
performance.

3.1 Lottery Ticket Hypothesis

Hypothesis: A randomly-initialized, dense
neural network contains a subnetwork that is
initialized such that—when trained in isola-
tion—it can match the test accuracy of the
original network after training for at most the
same number of iterations.

Identifying winning tickets: We identify
a winning ticket by training a network and
pruning its smallest magnitude weights. The
remaining, unpruned connections constitute
the architecture of the winning ticket, and
each unpruned connections value is then reset
to its initialization from the original network

4
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Figure 2: Pruning.

before it was trained.

We can prune the weights for n rounds for
a p% pruned network by pruning p

1
n % each

round. Winning tickets tend to learn faster
than the original networks.

3.1.1 Interaction with Dropout

Dropout [8] improves accuracy by randomly
disabling a fraction of the units on each train-
ing iteration. Since the lottery hypothesis sug-
gests that one of these subnetworks comprises
a winning ticket, it is natural to ask whether
dropout and network pruning interact.

Experiments combining pruning and
dropout [4] suggests that iterative pruning in-
teracts with dropout in a complimentary way.

3.1.2 Limitations

Retraining a neural network n times is very
computationally intensive, and likely not fea-
sible on modern LLMs. It is possible to take
a one-shot pruning approach, but iterative
pruning typically produces better accuracy at
smaller sizes.

3.2 LLM-shearing

LLM shearing is an algorithm which consists
of the following two components: (1) targeted

structured pruning, which prunes a source
model to a specified target architecture, typi-
cally existing pre-trained models, and (2) dy-
namic batch loading which dynamically up-
dates the composition of sampled data in each
training batch based on varying losses across
different domains. [11] We only cover (1) as it
is most relevant to our studies.

Though aggressive pruning in (1) inevitably
incurs a performance drop, continued pre-
training in (2) helps the compressed model
reach and occasionally exceed pre-pruned per-
formance.

3.2.1 Targeted Structured Pruning

The goal of targeted structured pruning is
to prune the source model into some desired
target configuration, typically that of a pre-
trained model, a decision based on the intu-
ition that these configurations have already
been well-optimized.

The LLM learns a set of pruning masks (a bi-
nary variable that decides whether a compo-
nent is pruned or retained) on model param-
eters at different granularities, ranging from
hidden dimensions to local multi-head atten-
tions. To directly impose constraints on the
pruned model shape, we use Lagrange multi-
pliers. For example, for a target number of
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heads Hτ , we have the imposed constraint on
a single layer as

Lhead(λ, ϕ, z) = λhead ·
(∑

zhead −Hτ

)
+ ϕhead ·

(∑
zhead −Hτ

)2

Similar constraints are applied to prun-
ing other structures. Overall, we jointly
optimize the model weights and prun-
ing masks by a min-max objective
minθ,z maxλ,ϕ Lprune(θ, z, λ, ϕ):

Lprune(θ, z, λ, ϕ) = L(θ, z) +

LS∑
j=1

Lhead
j +

LS∑
j=1

Lint
j

+Llayer +  Lhidden.

where L(θ, z) is the language modeling loss
computed with the masked model weights.
This objective will eventually produce a model
with the target shape.

Following pruning, we can finalize the pruned
architecture by preserving the highest-scoring
components associated with the mask vari-
ables in each substructure, and continue pre-
training the pruned model with the language
modeling objective.

4 Knowledge Distillation

Small Models Learn to Replicate Large Models

Figure 3: An illustration showing Black-box knowledge distillation and so-called Grey-box
knowledge distillation.

Knowledge distillation is a model compres-
sion technique that transfers knowledge from
a larger, more complex model (the teacher
model) to a smaller, more efficient model (the
student model. This approach to LLM com-
pression was used to create the open-source
LLaMA models and is an active area of re-
search. Both the techniques discussed in this

report and other heuristic methods are cov-
ered in a survey of knowledge distillation tech-
niques by Xiaohan et al. [12]

4.1 Supervised Fine-Tuning

Supervised Fine-Tuning (SFT), also known
as Sequence-Level Knowledge Distillation (Se-
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qKD) [6], is one of the simplest yet highly ef-
fective methods for distilling black-box LLMs.
SFT involves fine-tuning the student model
by maximizing the likelihood of the sequences
generated by the teacher LLM, ensuring that
the student’s predictions closely align with
those of the teacher. Let p be the probabil-
ity distribution of the teacher model, and q
be the probability distribution of the student
model. This process can be mathematically
expressed as minimizing the following objec-
tive function:

LSFT = Ex∼χ,y∼pT (y|x)[− log pS(y|x)],

where y is the output sequence produced by
the teacher model.

4.2 Divergence

Divergence-based methods minimize diver-
gence between the probability distributions of
the teacher and student models, represented
by a general divergence function D:

Ldiv = Ex∼χ,y∼Υ[D(pT (y|x), pS(y|x))],

The specific form of D varies depending on the
type of divergence employed. The commonly-
used standard KD objectives minimize the
approximated forward Kullback-Leibler diver-
gence (KLD) between the teacher and the stu-
dent output distribution (soft labels), which is

D(p, q) =
∑

p(t) log
p(t)

q(t)
.

A drawback of this approach is that soft la-
bels are not available for the most powerful,
state of the art LLMs. [2]

4.3 Similarity

Similarity-based methods in knowledge distil-
lation aim to align the hidden states or fea-
tures of the student model with those of the
teacher. These methods use various similarity
metrics to measure and optimize the congru-
ence of internal representations between the
two models. The objective is to ensure that
the student model not only produces outputs
similar to those of the teacher, but also pro-
cesses information in a comparable manner.
The formulation for a similarity-based objec-
tive might look like:

LSim = Ex∼χ,y∼Υ[LF (ΦT (fT (x, y)),ΦS(fS(x, y)))]

where fT (x, y) and fS(x, y) are the feature
maps of the teacher and student models.
Transformation functions ΦT ,ΦS are applied
to these feature maps to ensure they are in
the same shape, facilitating direct compari-
son. The similarity function LF is used to
match these transformed feature maps. Typ-
ical functions for LF include:

• L2 Norm: ||ΦT (fT (x, y))−ΦS(fS(x, y))||w

• L1 Norm: ||ΦT (fT (x, y))−ΦS(fS(x, y))1

5 Low Rank Factorization

Low-Rank matrices produce comparable performance

5.1 The Linformer

The softmax equation (1) of the standard self-
attention mechanism of the Transformer re-
quires multplying two n × d matrices, which

uses O(n2) time and space with respect to
sequence length. The Linformer [10] reduces
both complexities to O(n) by approximating
the self-attention mechanism with a low-rank
matrix.

7



Math 221: Advanced Matrix Computations

Figure 4: Low Rank Decomposition.

The Linformer paper hypothesizes that the
self-attention mechanism has low intrinsic
rank. Formally, ∀Q,K, V ∈ Rn×d and
WQ

i ,WK
i ,W V

i ∈ Rd×d for any column vector
ω ∈ Rn of matrix VW V

i , there exists a low-
rank matrix P̃ ∈ Rn×n such that

P (||P̃ωT − PωT || < ϵ||PωwT ||) > 1 − o(1)

and rank(P̃ ) = Θ(log(n)), where the context
mapping P is defined in equation (1) as the
softmax function.

To calculate P ·VW V
i in linear time and mem-

ory complexity, we can add two linear pro-
jection matrices Ei, Fi ∈ Rn×k when comput-
ing key and value. First, project the original
(n×d) dimensional key and value layers KWK

i

and VW V
i into (k × d) dimensional projected

key and value layers. Then compute a (n×k)
dimensional context mapping P using scaled
dot product attention:

headi = softmax

(
QWQ

i (EiKWK
i )T√

dk

)
·FiVW V

i

Computing context embeddings for each head
using P · (FiVW V

i ) requires O(nk) time and
space complexity. Choosing a very small pro-
jected dimension k << n, we can significantly
reduce the memory and space consumption.

5.2 Low Rank Adaptation

Traditional fine-tuning of LLMs for domain-
specific applications typically updates all the
parameters of the pre-trained model.

Low-Rank Adaptation (LoRA) is a technique
which freezes the pre-trained model weights
and injects trainable low-rank decomposition
matrices into each layer of the Transformer
architecture, greatly reducing the number of
trainable parameters for downstream tasks [5].

It was shown in previous papers that large,
over-parametrized models in fact reside on a
low intrinsic dimension. LoRA takes advan-
tage of this by finetuning matrices of compar-
atively tiny rank (typically r = 8 or 16, but
sometimes as small as r = 1).

This makes LoRA both storage and com-
pute efficient. We only need to optimize
the injected, much smaller low-rank matri-
ces, rather than calculating the gradients and
maintaining the optimizer states for most pa-
rameters. The low-rank matrices are then
merged with the frozen weights when de-
ployed, introducing no inference latency com-
pared to a fully-fine tuned model by construc-
tion.

5.2.1 The Method

For a pre-trained weight matrix W0 ∈ Rd×k,
we constrain its update by representing the
latter with a low-rank decomposition W0 +
∆W = W0 + BA where B ∈ Rd×r, A ∈ Rr×k,
and the rank r << min(d, k). Note that both
W0 and BA are in Rd×k. We use random
Gaussian initialization for A and initialize an
empty matrix for B, so ∆W = BA is zero at
the beginning of training.

8
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Our forward pass becomes:

h = W0x + ∆Wx = W0x + BAx.

When deployed in production, we can explic-
itly compute and store W = W0 + BA and
perform inference as usual.

5.2.2 LoRA on Transformers

LoRA can be applied to any weight matrix
in a neural network to reduce the number
of trainable parameters. In the Transformer
arhitecture, there are four weight matrices
in the self-attention module (Wq,Wk,Wv,Wσ)
and two in the MLP module.

5.3 Quantized LoRA

Quantized LoRA (QLoRA) compresses LLMs
further by introducing (a) 4-bit NormalFloat
(NF4), a data type that is information the-
oretically optimal for normally distributed
weights, (b) Double Quantization to reduce
the average memory footprint by quantization
the quantization constants, and (c) Paged Op-
timizers to manager memory spikes. [3]

5.3.1 Improvements on LoRA

4-bit NormalFloat Quantization: To en-
sure the entire range of a low-bit data type
is used, the input data type is commonly
rescaled into the target data type range
through normalization by the absolute max-
imum of the input elements.

For example, quantizing a FP32 tensor into a
Int8 tensor would be:

X Int8 = round

(
127

absmax(XFP32)
XFP32

)

= round(cFP32 ·XFP32)

where c is the quantization constant. Dequan-
tization is the inverse:

dequant(cFP32,XInt8

) =
X Int8

cFP32
= XFP32.

Neural Network weights usually have a zero-
centered normal distribution with standard
deviation σ. We can therefore transform all
weights to a single fixed distribution by scal-
ing σ such that the distribution fits exactly
into the range of our data type.

Double Quantization: Quantize the quan-
tization constants for additional memory sav-
ings. the double quantization process will be
explained further in the Implementation sec-
tion

Paged Optimizers: Use the NVIDIA unified
memory feature which does automatic page-
to-page transfers between the CPU and GPU
for error-free GPU processing in the scenario
where the GPU occasionally runs out of mem-
ory.

5.3.2 Implementation

QLoRA for a single linear layer in the quan-
tized base model with a single LoRA adapter
is as follows, where f is the double Dequant
function and g is the dequant function and

f(cFP32
1 , ck2,W

k) = q(q(cFP32
1 , ck2),W 4) = WBF16

Y BF16 = XBF16f(cFP32
1 , ck2,W

k) = WBF16

6 Conclusions

This project has presented a comprehensive survey of compression techniques for Large Lan-
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guage Models, analyzing the methodologies and impacts of quantization, pruning, knowledge
distillation, and low-rank factorization. Each technique offers distinct advantages in optimizing
LLMs for practical deployment.

Quantization methods, exemplified by OneBit and SpinQuant, effectively reduce model size
and computational cost, enabling deployment on resource-constrained devices. Pruning strate-
gies, including those based on the Lottery Ticket Hypothesis and targeted structured pruning,
achieve model sparsity while preserving performance through iterative fine-tuning. Knowledge
distillation facilitates the transfer of knowledge from large teacher models to smaller student
models, bridging the gap between model complexity and deployability. Finally, low-rank fac-
torization techniques like LoRA and QLoRA significantly improve fine-tuning efficiency by
leveraging low-dimensional subspaces, reducing storage and computational overhead without
substantial accuracy loss.

Ultimately, no single compression technique is universally superior. The most promising direc-
tion for future research lies in combining these orthogonal methods. For example, integrating
quantized low-rank adaptation or developing hybrid approaches combining pruning and knowl-
edge distillation could yield substantial improvements. As LLMs continue to grow in scale
and complexity, model compression will remain crucial for ensuring accessibility, efficiency, and
broader applicability across diverse domains.
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